Козы

Бета окисление липидов. B-окисление жирных кислот

Окисление жирных кислот - это процесс распада жирных кислот, который протекает с выделением энергии. Из этой статьи ты узнаешь, почему данная химическая реакция чрезвычайно важна для нашего организма.

Жирные кислоты образуются при расщеплении жиров. Такие жиры могут накапливаться в организме и использоваться в дальнейшем для получения энергии. Жирные кислоты необходимы человеческому организму, поскольку они участвуют в транспортировке кислорода кровеносной системой, укрепляют клеточные мембраны, а также обеспечивают слаженную работу всех органов и тканей. Жирные кислоты понижают холестерин, препятствуя образованию бляшек в артериях и снижая уровень триглицеридов. Также жирные кислоты предупреждают появление морщин, помогая сохранить кожу здоровой и упругой.

Существует три типа жирных кислот: омега-3, омега-6 и омега-9. Омега-3 и омега-6 называют незаменимыми, потому что они помогают регулировать уровень липидов в крови. От этого зависит свертываемость крови и кровяное давление. Кроме того, незаменимые жирные кислоты стимулируют работу иммунной системы.

Окисление жирных кислот и выделение энергии

Главный источник энергии для организма — глюкоза. Если запас глюкозы исчерпан, начинается процесс расщепления запасов жирных кислот. Он протекает с выделением энергии. То же самое происходит и при расщеплении углеводов, однако жирные кислоты высвобождают больше энергии на один атом углерода.

Организму важно расщеплять сохраненные жиры, поскольку иногда тело нуждается в энергии в тот момент, когда нет подходящего источника пищи, которую можно переработать.

Нарушение окисления жирных кислот

Организм некоторых людей не способен расщеплять накопленные жиры из-за нарушений в работе или отсутствия определенных ферментов. Часто это обусловлено генетическими факторами. Это означает, что, нуждаясь в энергии и не имея источника пищи, организм не может использовать жиры. В результате жирные кислоты не расщепляются и накапливаются в крови, а значит, жиры продолжают откладываться. Это может привести к серьезным проблемам со здоровьем.

Наиболее часто причиной нарушений процесса окисления жирных кислот является дефицит карнитина. Карнитин — это аминокислота, которая транспортирует жирные кислоты в митохондрии, где они расщепляются, выделяя энергию. Карнитин также регулирует метаболизм, предотвращая понижение уровня сахара в крови и помогая выводить клеточные отходы, способные привести к интоксикации.

Как увеличить количество жирных кислот в рационе

Жирные кислоты содержатся в рыбе и некоторых растениях. Омега-3 и омега-6 жирные кислоты не синтезируются в нашем организме, поэтому их необходимо получать с пищей или принимать в виде пищевых добавок. Источниками жирных кислот являются лосось, тунец, макрель, семена льна, соевое и сафлоровое масла. В качестве пищевых добавок обычно принимают капсулы рыбьего жира.

Статью подготовила : Ольга Позиховская

Главное условие жизни любого организма - непрерывное поступление энергии, которая расходуется на различные клеточные процессы. При этом определенная часть питательных соединений может использоваться не сразу, а преобразовываться в запасы. Роль такого резервуара выполняют жиры (липиды), состоящие из глицерина и жирных кислот. Последние и используются клеткой в качестве топлива. При этом осуществляется окисление жирных кислот до СО 2 и Н 2 О.

Основные сведения о жирных кислотах

Жирные кислоты представляют собой углеродные цепи различной длины (от 4 до 36 атомов), которых по химической природе относят к карбоновым кислотам. Эти цепи могут быть как разветвленными, так и не разветвленными и содержать разное количество двойных связей. Если последние полностью отсутствуют, жирные кислоты называют насыщенными (характерно для многих липидов животного происхождения), а в противном случае - ненасыщенными. По расположению двойных связей жирные кислоты подразделяют на мононенасыщенные и полиненасыщенные.

Большинство цепей содержит четное число атомов углерода, что связано с особенностью их синтеза. Однако есть соединения с нечетным количеством звеньев. Окисление этих двух типов соединений несколько отличается.

Общая характеристика

Процесс окисления жирных кислот сложный и многостадийный. Он начинается с их проникновения в клетку и завершается в При этом заключительные этапы фактически повторяют катаболизм углеводов (цикл Кребса, превращение энергии трансмембранного градиента в Конечными продуктами процесса являются АТФ, CO 2 и вода.

Окисление жирных кислот в клетке эукариот осуществляется в митохондриях (наиболее характерное место локализации), пероксисомах или эндоплазматическом ретикулуме.

Разновидности (типы) окисления

Существует три типа окисления жирных кислот: α, β и ω. Наиболее часто этот процесс протекает по β-механизму и локализуется в митохондриях. Омега-путь представляет собой второстепенную альтернативу β-механизму и осуществляется в эндоплазматическом ретикулуме, а альфа-механизм характерен только для одного вида жирной кислоты (фитановой).

Биохимия окисления жирных кислот в митохондриях

Для удобства процесс митохондриального катаболизма условно подразделяется на 3 этапа:

  • активация и транспортировка в митохондрии;
  • окисление;
  • окисление образовавшегося ацетил-коэнзима А через цикл Кребса и электротранспортную цепь.

Активация представляет собой подготовительный процесс, который переводит жирные кислоты в форму, доступную для биохимических превращений, так как сами по себе эти молекулы инертны. Кроме того, без активации они не могут проникнуть в мембраны митохондрий. Эта стадия протекает у внешней мембраны митохондрий.

Собственно, окисление - ключевой этап процесса. Оно включает четыре стадии, по окончании которых жирная кислота превращается в молекулы Ацетил-КоА. Тот же продукт образуется и при утилизации углеводов, так что дальнейшие этапы аналогичны последним стадиям аэробного гликолиза. Образование АТФ происходит в цепи переноса электронов, где энергия электрохимического потенциала используется для образования макроэргической связи.

В процессе окисления жирной кислоты кроме Ацетил-КоА образуются также молекулы NADH и FADH 2 , которые тоже поступают в дыхательную цепь в качестве доноров электронов. В результате суммарный энергетический выход катаболизма липидов достаточно высок. Так, к примеру, окисление пальмитиновой кислоты по β-механизму дает 106 молекул АТФ.

Активация и перенос в митохондриальный матрикс

Жирные кислоты сами по себе инертны и не могут подвергаться окислению. Активация приводит их в форму, доступную для биохимических превращений. Кроме того, в неизменном виде эти молекулы не могут проникнуть в митохондрии.

Суть активации заключается в превращении жирной кислоты в ее Ацил-СоА-тиоэфир, который впоследствии и подвергается окислению. Этот процесс осуществляется специальными ферментами - тиокиназами (Ацил-СоА-синтетазами), прикрепленными к внешней мембране митохондрий. Реакция протекает в 2 этапа, сопряженных с затратой энергии двух АТФ.

Для активации необходимы три компонента:

  • HS-CoA;
  • Mg 2+ .

Вначале жирная кислота взаимодействует с АТФ с образованием ациладенилата (промежуточное соединение). Тот, в свою очередь, реагирует с HS-CoA, тиоловая группа которого вытесняет АМФ, формируя тиоэфирную связь с карбоксильной группой. В результате образуется вещество ацил-CoA - производное жирной кислоты, которое и транспортируется в митохондрии.

Транспортировка в митохондрии

Эта стадия получила название трансэтирификации с карнитином. Перенос ацил-CoA в митихондриальных матрикс осуществляется через поры с участием карнитина и специальных ферментов - карнитин-ацилтрансфераз.

Для транспортировки через мембраны CoA заменяется на карнитин с образованием ацил-карнитина. Это вещество переносится в матрикс методом облегченной диффузии с участием ацил-карнитин/карнитинового переносчика.

Внутри митохондрий осуществляется реакция обратного характера, заключающаяся в отсоединении ретиналя, вновь поступающего в мембраны, и восстановлении ацил-CoA (в данном случае используется "местный" коэнзим А, а не тот, с которым была образована связь на стадии активации).

Основные реакции окисления жирных кислот по β-механизму

К самому простому типу энергетической утилизации жирных кислот относят β-окисление не имеющих двойных связей цепей, в которых количество углеродных звеньев четное. В качестве субстрата для этого процесса, как уже выше отмечалось, выступает ацил коэнзима А.

Процесс β-окисления жирных кислот состоит из 4 реакций:

  1. Дегидрирование - отщепление водорода от β-углеродного атома с возникновением двойной связи между звеньями цепи, находящимися в α и β-положениях (первый и второй атомы). В результате образуется еноил-CoA. Ферментом реакции является ацил-CoA-дегидрогеназа, которая действует в комплексе с кофермента ФАД (последний восстанавливается до ФАДН2).
  2. Гидратация - присоединение молекулы воды к еноил-CoA, в результате чего образуется L-β-гидроксиацил-CoA. Осуществляется еноил-CoA-гидратазой.
  3. Дегидрирование - окисление продукта предыдущей реакции НАД-зависимой дегидрогеназой с образованием β-кетоацил-коэнзима А. При этом происходит восстановление НАД до НАДН.
  4. Расщепление β-кетоацил-CoA до ацетил-CoA и укороченного на 2 атома углерода ацил-CoA. Реакция осуществляется под действием тиолазы. Обязательным условием является присутствие свободного HS-CoA.

Затем все снова начинается с первой реакции.

Цикличное повторение всех стадий осуществляется до тех пор, пока вся углеродная цепочка жирной кислоты не превратится в молекулы ацетил-коэнзима А.

Образование Ацетил-КоА и АТФ на примере окисления пальмитоил-CoA

В конце каждого цикла в единственном количестве образуются молекулы ацил-CoA, НАДН и ФАДН2, а цепь ацил-CoA-тиоэфира становится короче на два атома. Передавая электроны в электротранспортную цепь, ФАДН2 дает полторы молекулы АТФ, а НАДН - две. В результате из одного цикла получается 4 молекулы АТФ, не считая энерговыход ацетил-CoA.

В цепочку пальмитиновой кислоты входит 16 углеродных атомов. Это означает, что на стадии окисления должно осуществиться 7 циклов с образованием восьми ацетил-CoA, а энерговыход от НАДН и ФАДН 2 в таком случае составит 28 молекул АТФ (4×7). Окисление ацетил-CoA тоже идет на образование энергии, которая запасается в результате поступления в электротранспортную цепь продуктов цикла Кребса.

Суммарный выход стадий окисления и цикла Кребса

В результате окисления ацетил-CoA получается 10 молекул АТФ. Так как катаболизм пальмитоил-CoA дает 8 ацетил-CoA, то энергитический выход будет 80 АТФ (10×8). Если сложить это с результатом окисления НАДН и ФАДН 2 , то получится 108 молекул (80+28). Из этого количества следует вычесть 2 АТФ, которые ушли на активацию жирной кислоты.

Итоговое уравнение реакции окисления пальмитиновой кислоты будет иметь вид: пальмитоил-CoA + 16 О 2 + 108 Pi + 80 АДФ = CoA + 108 АТФ + 16 СО 2 + 16 H 2 O.

Расчет выделения энергии

Энергетический выхлоп от катаболизма конкретной жирной кислоты зависит от количества углеродных звеньев в ее цепи. Число молекул АТФ рассчитывается по формуле:

где 4 - количество АТФ, образующиеся при каждом цикле за счет НАДН и ФАДН2, (n/2 - 1) - количество циклов, n/2×10 - энерговыход от окисления ацетил-CoA, а 2 - затраты на активацию.

Особенности реакций

Окисление имеет некоторые особенности. Так, сложность окисления цепей с двойными связями заключается в том, что последние не могут подвергаться воздействию еноил-CoA-гидратазы из-за того, что находятся в цис-положении. Эта проблема устраняется еноил-CoA-изомеразой, благодаря которой связь приобретает транс-конфигурацию. В результате молекула становится полностью идентичной продукту первой стадии бета-окисления и может подвергаться гидратации. Участки, содержащие только одинарные связи, окисляются так же, как насыщенные кислоты.

Иногда для продолжения процесса недостаточно еноил-CoA-изомеразы. Это касается цепей, в которых присутствует конфигурация цис9-цис12 (двойные связи при 9-м и 12-м атомах углерода). Здесь помехой является не только конфигурация, но и положение двойных связей в цепи. Последнее исправляется ферментом 2,4-диеноил-CoA-редуктазой.

Катаболизм жирных кислот с нечетным числом атомов

Такой тип кислот характерен для большей части липидов естественного (природного) происхождения. Это создает определенную сложность, так как каждый цикл подразумевает укорачивание на четное число звеньев. По этой причине циклическое окисление высших жирных кислот данной группы продолжается до появления в качестве продукта 5-углеродного соединения, которое расщепляется на ацетил-CoA и пропионил-коэнзим А. Оба соединения поступают в другой цикл из трех реакций, в результате которых образуется сукцинил-CoA. Именно он и поступает в цикл Кребса.

Особенности окисления в пероксисомах

В пероксисомах окисление жирных кислот происходит по бета-механизму, который подобен, но не идентичен митохондриальному. Он также состоит из 4-х стадий, завершающихся образованием продукта в виде ацетил-CoA, но при этом имеет несколько ключевых отличий. Так, водород, отщепившийся на стадии дегидрирования, не восстанавливает ФАД, а переходит на кислород с образованием перикиси водорода. Последний сразу подвергается расщеплению под действием каталазы. В результате энергия, которая могла быть использована для синтеза АТФ в дыхательной цепи, рассеивается в виде тепла.

Второе важное различие заключается в том, что некоторые ферменты пероксисом специфичны к определенным малораспространенным жирным кислотам и отсутствуют в митохондриальном матриксе.

Особенность пероксисом клеток печени заключается в том, что там отсутствует ферментный аппарат цикла Кребса. Поэтому в результате бета-окисления образуются короткоцепочечные продукты, которые для окисления транспортируются в митохондрии.

2.1. Окисление жирных кислот в клетках

Высшие жирные кислоты могут окисляться в клетках тремя путями:

а) путем a-окисления,

б) путем b-окисления,

в) путем w-окисления.

Процессы a- и w-окисления высших жирных кислот идут в микросомах клеток с участием ферментов монооксигеназ и играют в основном пластическую функцию -- в ходе этих процессов идет синтез гидроксикислот, кетокислот и кислот с нечетным числом атомов углерода, необходимых для клеток. Так, в ходе a-окисления жирная кислота может быть укорочена на один атом углерода, превращаясь таким образом в кислоту с нечетным числом атомов"C", в соответствии с приведенной схемой:

2.1.1. b-Окисление высших жирных кислот Основным способом окисления высших жирных кислот, по крайней мере в отношении общего количества окисляющихся в клетке соединений данного класса, является процесс b-окисления, открытый Кноопом еще в 1904 г. Этот процесс можно определить как процесс ступенчатого окислительного расщепления высших жирных кислот, в ходе которого идет последовательное отщепление двухуглеродных фрагментов в виде ацетил-КоА со стороны карбоксильной группы активированной молекулы высшей жирной кислоты.

Поступающие в клетку высшие жирные кислоты подвергаются активации с превращением их в ацил-КоА (R-CO-SKoA), причем активация жирных кислот происходит в цитозоле. Сам же процесс b-окисления жирных кислот идет в матриксе митохондрий. В то же время внутренняя мембрана митохондрий непроницаема для ацил-КоА, в связи с чем встает вопрос о механизме транспорта ацильных остатков из цитозоля в матрикс митохондрий.

Ацильные остатки переносятся через внутреннюю мембрану митохондрий с помощью специального переносчика, в качестве которого выступает карнитин (КН):

В цитозоле с помощью фермента внешней ацилКоА:карнитинацилтрансферазы (Е1 на ниже приведенной схеме) остаток высшей жирной кислоты переносится с коэнзима А на карнитин с образованием ацилкарнитина:

Ацилкарнитинин при участии специальной карнитин-ацилкарнитин-транслоказной системы проходит через мембрану внутрь митохондрии и в матриксе с помощью фермента внутренней ацил-КоА:карнитин-ацилтрансферазы (Е2) ацильный остаток передается с карнитина на внутримитохондриальный коэнзим А. В результате в матриксе митохондрий появляется активированный остаток жирной кислоты в виде ацил-КоА; высвобожденный карнитин с помощью той же самой транслоказы проходит через мембрану митохондрий в цитозоль, где может включаться в новый цикл переноса. Карнитин-ацилкарнитин-транслоказа, встроенная во внутреннюю мембрану митохондрий, осуществляет перенос молекулы ацилкарнитина внутрь митохондрии в обмен на молекулу карнитина, удаляемую из митохондрии.

Активированная жирная кислота в матриксе митохондрий подвергается ступенчатому циклическому окислению по схеме:

В результате одного цикла b-окисления радикал жирной кислоты укорачивается на 2 атома углерода, а отщепившийся фрагмент выделяется в виде ацетил-КоА. Суммарное уравнение цикла:

В ходе одного цикла b-окисления, например,при превращении стеароил-КоА в пальмитоил-КоА с образованием ацетил-КоА, высвобождается 91 ккал/моль свободной энергии, однако основная часть этой энергии накапливается в виде энергии восстановленных коферментов, потери же энергии в виде теплоты составляют лишь около 8 ккал/моль.

Образовавшийся ацетил-КоА может поступать в цикл Кребса, где он будет окисляться до конечных продуктов или же может использоваться для других нужд клетки, например, для синтеза холестерола. Укороченный на 2 атома углерода ацил-КоА вступает в новый цикл b-окисления. В результате нескольких последовательных циклов окисления вся углеродная цепь активированной жирной кислоты расщепляется до "n" молекул ацетил-КоА, причем значение "n" определяется числом атомов углерода в исходной жирной кислоте.

Энергетический эффект одного цикла b-окисления можно оценить исходя из того, в ходе цикла образуются 1 молекула ФАДН2 и 1 молекула НАДН+Н. При их поступлении в цепь дыхательных ферментов будет синтезироваться 5 молекул АТФ (2 + 3). Если образовавшийся ацетил-КоА будет окислен в цикле Кребса, то клетка получит еще 12 молекул АТФ.

Для стеариновой кислоты суммарное уравнение ее b-окисления имеет вид:

Расчеты показывают, что при окислении стеариновой кислоты в клетке будет синтезироваться 148 молекул АТФ. При расчете энергетического баланса окисления из этого количества нужно исключить 2 макроэргических эквивалента, затрачиваемых при активации жирной кислоты (в ходе активации АТФ расщепляется до АМФ и 2 Н3РО4). Таким образом, при окислении стеариновой кислоты клетка получит 146 молекул АТФ.

Для сравнения: при окислении 3 молекул глюкозы, содержащих также 18 атомов углерода, клетка получает только 114 молекул АТФ, т.е. высшие жирные кислоты являются более выгодным энергетическим топливом для клеток по сравнению с моносахаридами. По-видимому, это обстоятельство является одной из главных причин того, что энергетические резервы организма представлены преимущественно в виде триацилглицеринов, а не гликогена.

Общее количество свободной энергии, выделяющееся при окислении 1 моля стеариновой кислоты составляет около 2632 ккал, из них накапливается в виде энергии макроэргических связей синтезированных молекул АТФ около 1100 ккал.Таким образом, аккумулируется примерно 40% всей выделяющейся свободной энергии.

Скорость b-окисления высших жирных кислот определяется, во-первых, концентрацией жирных кислот в клетке и, во-вторых, активностью внешней ацил-КоА:карнитин-ацилтрансферазы. Активность фермента угнетается малонил-КоА. На смысле последнего регуляторного механизма мы остановимся несколько позднее, когда будем обсуждать координацию процессов окисления и синтеза жирных кислот в клетке.


Оранжевыми миндалинами и аккумуляцией эфиров ХС в других ретикулоэндотелиальных тканях. Патология связана с ускоренным катаболизмом апо А-I . Переваривание и всасывание липидов. Желчь. Значение. На заре формирования современного учения о внешнесекреторной функции печени, когда естествоиспытатели располагали лишь первыми...

Динамика химических превращений, происходящих в клетках, изучается биологической химией. Задачей физиологии является определение общих затрат веществ и энергии организмом и того, как они должны восполняться с помощью полноценного питания. Энергетический обмен служит показателем общего состояния и физиологической активности организма. Единица измерения энергии, обычно применяемая в биологии и...

Кислоты, которые относят к незаменимым жирным кислотам (линолевая, линоленовая, арахидоновая), которые не синтезируются у человека и животных. С жирами в организм поступает комплекс биологически активных веществ: фосфолипиды, стерины. Триацилглицеролы – основная их функция – запасание липидов. Они находятся в цитозоле в виде мелкодисперсных эмульгированных маслянистых капелек. Сложные жиры: ...

... α,d – глюкоза глюкозо – 6 – фосфат С образованием глюкозо – 6 – фосфата пути гликолиза и гликогенолиза совпадают. Глюкозо – 6 – фосфат занимает ключевое место в обмене углеводов. Он вступает в следующие метаболические пути: глюкозо – 6 – фосфат глюкоза + Н3РО4 фруктозо – 6 – фосфат пентозный путь распада (поступает в кровь и др. ...

И дыхательной цепью , для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ.

Окисление жирных кислот (β-окисление)

Элементарная схема β-окисления.


Этот путь называется β-окислением, так как происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С 1 и С 2 исходной жирной кислоты.

Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ . Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

Пальмитоил-SКоА + 7ФАД + 7НАД + + 7Н 2 O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН 2 + 7НАДН

Этапы окисления жирных кислот

Реакция активации жирной кислоты.


1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-S-КоА. Ацил-S-КоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.

Карнитин-зависимый транспорт жирных кислот в митохондрию.


2. Ацил-S-КоА не способен проходить через митохондриальную мембрану, поэтому существует способ его переноса в комплексе с витаминоподобным веществом карнитином. На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I.

Карнитин синтезируется в печени и почках и затем транспортируется в остальные органы. Во внутриутробном периоде и в первые годы жизни значение карнитина для организма чрезвычайно велико. Энергообеспечение нервной системы детского организма и, в частности, головного мозга осуществляется за счет двух параллельных процессов: карнитин-зависимого окисления жирных кислот и аэробного окисления глюкозы . Карнитин необходим для роста головного и спинного мозга, для взаимодействия всех отделов нервной системы, ответственных за движение и взаимодействие мышц. Существуют исследования, связывающие с недостатком карнитина детский церебральный паралич и феномен «смерти в колыбели».

3. После связывания с карнитином жирная кислота переносится через мембрану транслоказой. Здесь на внутренней стороне мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-S-КоА который вступает на путь β-окисления.

Последовательность реакций β-окисления жирных кислот.


4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА. К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

Расчет энергетического баланса β-окисления

При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

  • количество образуемого ацетил-SКоА - определяется обычным делением числа атомов углерода в жирной кислоте на 2;
  • число циклов β-окисления. Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 −1), где n - число атомов углерода в кислоте;
  • число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН 2 не образуется. Количество необразованных ФАДН 2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений;
  • количество энергии АТФ, потраченной на активацию (всегда соответствует двум макроэргическим связям).

Пример. Окисление пальмитиновой кислоты

  • так как имеется 16 атомов углерода, то при β-окислении образуется 8 молекул ацетил-SКоА. Последний поступает в ЦТК, при его окислении в одном обороте цикла образуется 3 молекулы НАДН, 1 молекула ФАДН 2 и 1 молекула ГТФ, что эквивалентно 12 молекулам АТФ (см также Способы получения энергии в клетке). Итак, 8 молекул ацетил-S-КоА обеспечат образование 8×12=96 молекул АТФ.
  • для пальмитиновой кислоты число циклов β-окисления равно 7. В каждом цикле образуется 1 молекула ФАДН 2 и 1 молекула НАДН. Поступая в дыхательную цепь, в сумме они «дадут» 5 молекул АТФ. Таким образом, в 7 циклах образуется 7×5=35 молекул АТФ.
  • двойных связей в пальмитиновой кислоте нет.
  • на активацию жирной кислоты идет 1 молекула АТФ, которая, однако, гидролизуется до АМФ, то есть тратятся 2 макроэргические связи или две АТФ.

Таким образом, суммируя, получаем 96+35-2 =129 молекул АТФ образуется при окислении пальмитиновой кислоты.

Окисление жирных кислот может быть патологически повышено или патологически снижено.

Увеличение скорости окисления жирных кислот, особенно при недостатке углеводов происходит:

1. При приеме богатой жирами пище.

2. При голодании.

3. При сахарном диабете.

В этом случае из ацетил-КоА, образующего при β-окислении жирных кислот в печени образуется большое количество кетоновых тел. Накопление кетоновых тел приводит к ацидозу и называется кетоз.

Снижение скорости окисления жирных кислот наблюдается при:

1. Недостатке карнитина. Наблюдается у новорожденных, чаще недоношенных детей. Обусловлено либо нарушением биосинтеза карнитина, либо его «утечкой» в почках.

Симптомы:

· приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса окисления жирных кислот;

· уменьшения синтеза кетоновых тел, сопровождающееся повышением содержания свободных жирных кислот в плазме крови;

· миастения (мышечная слабость);

· накопление липидов.

Лечение: прием карнитина внутрь.

2. Снижении активности карнитин-пальмитоилтрансферазы.

В печени приводит к гипогликемии и понижению содержания кетоновых тел в плазме крови.

В мышцах - к нарушению процесса окисления жирных кислот, в результате чего возникает мышечная слабость и развивается миоглобинурия.

3. Дикарбоновой ацидурии.

Основной симптом - экскреция С 6 -С 10 -дикарбоновых кислот и развивается гипогликемия, не связанная с повышением кетоновых тел.

Этиология: отсутствие в митохондриях ацетил-КоА дегидрогеназы среднецепочечных жирных кислот, которые укорачиваются до среднецепочечных дикарбоновых кислот, выводимых из организма.

Возникает у людей после употребления незрелых плодов аки, которые содержат токсин гипоглицин, инактивирующий ацил-КоА-дегидрогеназу, в результате чего ингибируется процесс β-окисления.

5. Синдроме Цельвегера (цереброгепаторенальный синдром).

Является редким наследственным заболеванием, при котором во всех тканях отсутствует пероксисомы. У больных страдающих синдромом Цельвегера, в мозге накапливаются С 26 -С 28 -полиеновые кислоты, т.к. из-за отсутствия пероксисом у них не происходит процесс окисления длинноцепочечных жирных кислот.

6. Болезни Рефсума.

Редкое неврологическое заболевание. Связано с врожденным нарушением системы α-окисления, что приводит к накоплению в тканях фитановой кислоты, которая блокирует систему β-окисления.

Определение уровня общих липидов в плазме (сыворотке) крови по цветной реакции с сульфофосфованилиновым реактивом

Общие липиды - обобщенное понятие, включающее неэстерифицированные жирные кислоты, триглицериды, фосфолипиды, свободный и эстерифицированный холестерин, сфингомиелины.

Принцип метода: продукты распада ненасыщенных липидов образуют с реактивом (состоящим из серной, ортофосфорной кислот и ванилина) соединение, интенсивность окраски которого пропорциональна содержанию общих липидов в сыворотке крови.

Реактивы:

1. Концентрированная серная кислота;

2. Фосфорнованилиновая смесь. 4 объема концентрированной ортофосфорной кислоты смешивают с одним объемом 6 г/л раствора ванилина. Смесь хранят в посуде из темного стекла при комнатной температуре.

3. Эталонный раствор триолеина, 8 г/л.

Ход определения

К 0,02 мл сыворотки крови прибавляют 1,5 мл концентрированной серной кислоты. Содержимое перемешивают и помещают на 15 минут в кипящую водяную баню. После охлаждения гидролизата отмеривают 0,1 мл (контрольная проба 0,1 мл концентрированной серной кислоты), который переносят в другие пробирки, содержащие 1,5 мл фосфорнованилинового реактива. После перемешивания пробы инкубируют 50 минут в темном месте при комнатной температуре. Оптическую плотность пробы (А 1) и эталонного раствора (А 2) измеряют на фотоколориметре при длине волны 510-540 нм в кювете толщиной слоя 10 мм против контрольного раствора. Расчет производят по формуле: .

Нормальное содержание в сыворотке крови: 4 - 8 г/л.

Клинико-диагностическое значение. Изменения содержания в крови количественной и качественной составляющей данного показателя наблюдаются при многих заболеваниях и патологических состояниях, которые не рассматриваются в данном пособии. Применительно к мышечной деятельности наблюдается увеличение данного показателя после продолжительной физической нагрузки, что показывает степень включения липидного обмена в энергетическое обеспечение мышечной деятельности. При этом величина данного показателя обычно не выходит за референтные пределы. Более информативным является определение динамики сдвигов при физической нагрузке, составляющих данного показателя.

БИОСИНТЕЗ ЛИПИДОВ

Биосинтез липидов (липогенез) необходим для создания запасных форм. Биосинтез липидов начинается с биосинтеза жирных кислот.

Биосинтез жирных кислот

Система синтеза жирных кислот находится в растворимой цитоплазматической фракции многих органов и тканей, таких какпечень, почки, молочная железа, жировая ткань.

Биосинтез жирных кислот протекает с участием:

1. НАДФН∙Н + ;

5. ацетил-КоА в качестве субстрата и пальмитиновая кислота в качестве конечного продукта.

Особенности биосинтеза жирных кислот

Синтез жирных кислот не является простым обращением реакций β-окисления. Наиболее важными особенностями являются следующие:

1. Синтез жирных кислот протекает в цитоплазме, в отличие от распада который протекает в митохондриях.

2. Промежуточные продукты синтеза жирных кислот ковалентно связаны с сульфгидрильными группами ацилпереносящего белка (АПБ).

3. Многие ферменты синтеза жирных кислот у высших организмов и человека организованы в мультиферментный комплекс, называемый синтетазой жирных кислот.

4. Непосредственно ацетил-КоА используется только как затравка.

5. Растущая цепь жирной кислоты удлиняется путем непосредственного присоединения двухуглеродных компонентов, происходящих из ацетил-КоА. Активированным донором двухуглеродных компонентов на стадии элонгации служит малонил-КоА. Реакция элонгации запускается высвобождением СО 2 .

6. Роль восстановителя при синтезе жирной кислоты выполняет НАДФН·Н + .

7. Синтез жирной кислоты является циклическим процессом протекающим на поверхности синтетазы жирных кислот.

8. Элонгация под действием комплекса синтетазы жирных кислот останавливается на этапе образования пальмитата (С 16). Дальнейшая элонгация и введение двойных связей осуществляется другими ферментными системами.

Этапы биосинтеза жирных кислот

I этап - транспорт ацетил-КоА из митохондрий в цитоплазму

Жирные кислоты синтезируются в цитоплазме, а ацетил-КоА образуется из пирувата в митохондриях. Мембрана митохондрий не проницаема для ацетил-КоА, поэтому транспорт ацетил-КоА через мембрану обеспечивается специальными механизмами. Роль карнитина в транспорте ацетил-КоА не велика, так как он переносит только длинноцепочечные жирные кислоты. Данная проблема решается путем синтеза цитрата.

Митохондрия Цитоплазма


Ацетил-КоА + оксалоацетат ацетил-КоА + оксалоацетат + АДФ + Ф н


НО - С - СООН цитрат + АТФ + HSKoA


СН 2 - СООН

Рис. 20. Схема транспорта ацетил-КоА через мембрану митохондрий

Цитрат образуется в митохондриальном матриксе путем конденсации ацетил-КоА и оксалоацетата. Затем диффундирует в цитоплазму, где расщепляется цитратлиазой. Таким образом, ацетил-КоА и оксалоацетат переносятся из митохондрий в цитоплазму с использованием одной молекулы АТФ.

Источники НАДФН·Н + для биосинтеза жирных кислот

Оксалоацетат, образовавшийся в результате переноса ацетил-КоА в цитоплазму должен быть возвращен обратно в митохондрию. Данный процесс сопряжен с генерацией НАДФН·Н + . Реакция происходит в цитоплазме и протекает в 2 этапа:

1. Оксалоацетат + НАДН·Н + Малат + НАД +

МДГ (декарбоксилирующая)

2. Малат + НАДФ + Пируват + СО 2 + НАДФН·Н +

Образовавшийся пируват легко диффундирует в митохондрии, где он карбоксилируется в оксалоацетат под действием пируваткарбоксилазы (с затратой энергии АТФ).

Пируват + НСО 3 - + АТФ Оксалоацетат + АДФ + Ф н

Нормальное окисление жиров в организме тесно связано с циклом Кребса. Основной путь образования оксалоацетата - карбоксилирование ПВК. Для сгорания 1,5 г жирных кислот, требуется 1 г углеводов. Отсюда, среди биохимиков есть поговорка, что «жиры сгорают в пламени углеводов».

Оксалоацетат, который синтезировался в данной реакции, затем взаимодействует с ацетил-КоА с образованием цитрата, который окисляется в ЦТК.

Таким образом, на каждую молекулу ацетил-КоА, которая переходит из митохондрий в цитоплазму, образуется одна молекула НАДФН·Н + . Следовательно, при переходе 8 молекул ацетил-КоА необходимых для синтеза пальмитиновой кислоты, образуется 8 молекул НАДФН·Н + . Еще 6 молекул требуемых для этого процесса генерируются в пентозофосфатном пути.

II этап - образование малонил-КоА.

Является первой реакцией биосинтеза жирных кислот. Катализируется ферментом ацетил-КоА-карбоксилазой. Коферментом является биотин. Реакция заключается в карбоксилилировании ацетил-КоА, источником СО2 является бикарбонат.

C = O + HCO 3 - + АТФ Е– биотин CН 2 + АДФ+H 3 PO 4

ацетил - KоA малонил - KоA

Рис. 21. Карбоксилирование ацетил-КоА (коферментом ацетил-КоА-карбоксилазы является биотин)

Малонил-КоА, по сути, является активированным ацетил-КоА. Энергия запасается заранее в виде карбоксильной группы и освобождается при декарбоксилировании непосредственно при биосинтезе жирных кислот. В дальнейшем биосинтезе жирных кислот ацетил-КоА используется как затравка, а непосредственно синтез идет из малонил-КоА.

III этап - биосинтез жирных кислот.